Logistic.Rd
Density, distribution, and quantile, random number generation,
and parameter estimation functions for the logistic distribution with parameters location
and scale
.
Parameter estimation can be based on a weighted or unweighted i.i.d. sample and can be carried out numerically.
dLogistic(
x,
location = 0,
scale = 1,
params = list(location = 0, scale = 1),
...
)
pLogistic(
q,
location = 0,
scale = 1,
params = list(location = 0, scale = 1),
...
)
qLogistic(
p,
location = 0,
scale = 1,
params = list(location = 0, scale = 1),
...
)
rLogistic(
n,
location = 0,
scale = 1,
params = list(location = 0, scale = 1),
...
)
eLogistic(X, w, method = "numerical.MLE", ...)
lLogistic(
X,
w,
location = 0,
scale = 1,
params = list(location = 0, scale = 1),
logL = TRUE,
...
)
A vector of quantiles.
Location parameter.
Scale parameter.
A list that includes all named parameters.
Additional parameters.
A vector of probabilities.
Number of observations.
Sample observations.
An optional vector of sample weights.
Parameter estimation method.
logical; if TRUE, lLogistic gives the log-likelihood, otherwise the likelihood is given.
dLogistic gives the density, pLogistic the distribution function, qLogistic the quantile function, rLogistic generates random deviates, and eLogistic estimates the parameters. lLogistic provides the log-likelihood function.
If location
or scale
are omitted, they assume the default values of 0 or 1
respectively.
The dLogistic()
, pLogistic()
, qLogistic()
,and rLogistic()
functions serve as wrappers of the
standard dlogis
, plogis
, qlogis
, and
rlogis
functions in the stats package. They allow for the parameters to be declared not only as
individual numerical values, but also as a list so parameter estimation can be carried out.
The logistic distribution with location
= \(\alpha\) and scale
= \(\beta\) is most simply
defined in terms of its cumulative distribution function (Johnson et.al pp.115-116)
$$F(x) = 1- [1 + exp((x-\alpha)/\beta)]^{-1}.$$
The corresponding probability density function is given by
$$f(x) = 1/\beta [exp(x-\alpha/\beta][1 + exp(x-\alpha/\beta)]^{-2}$$
Parameter estimation is only implemented numerically.
The score function and Fishers information are as given by Shi (1995) (See also Kotz & Nadarajah (2000)).
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 2,
chapter 23. Wiley, New York.
Shi, D. (1995) Fisher information for a multivariate extreme value distribution, Biometrika, vol 82, pp.644-649.
Kotz, S. and Nadarajah (2000) Extreme Value Distributions Theory and Applications, chapter 3, Imperial Collage Press,
Singapore.
ExtDist for other standard distributions.
# Parameter estimation for a distribution with known shape parameters
X <- rLogistic(n=500, location=1.5, scale=0.5)
est.par <- eLogistic(X); est.par
#>
#> Parameters for the Logistic distribution.
#> (found using the numerical.MLE method.)
#>
#> Parameter Type Estimate S.E.
#> location location 1.5224838 0.04039734
#> scale scale 0.5215655 0.01949557
#>
#>
plot(est.par)
# Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dLogistic(den.x,location=est.par$location,scale=est.par$scale)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.2*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X), lty=2)
# Extracting location or scale parameters
est.par[attributes(est.par)$par.type=="location"]
#> $location
#> [1] 1.522484
#>
est.par[attributes(est.par)$par.type=="scale"]
#> $scale
#> [1] 0.5215655
#>
# log-likelihood function
lLogistic(X,param = est.par)
#> [1] -674.8085
# Evaluation of the precision of the parameter estimates by the Hessian matrix
H <- attributes(est.par)$nll.hessian
fisher_info <- solve(H)
var <- sqrt(diag(fisher_info));var
#> location scale
#> 0.04039734 0.01949557
# Example of parameter estimation for a distribution with
# unknown parameters currently been sought after.