Probability density function:

f(x)=xα1(1x)β1(α,β)f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}} {\mathcal{B}(\alpha,\beta)} with α\alpha and β\beta two shape parameters and \mathcal B beta function.

Cumulative distribution function:

F(x)=0xyα1(1y)β1dy(α,β)=(x;α,β)F(x) = \frac{\int_{0}^{x} y^{\alpha-1}(1-y)^{\beta-1}dy} {\mathcal{B}(\alpha,\beta)} =\mathcal{B}(x; \alpha,\beta) with (x;α,β)\mathcal B (x; \alpha,\beta) incomplete beta function.

Log-likelihood function:

L(α,β;X)=i[(α1)ln(x)+(β1)ln(1x)ln(α,β)]L(\alpha,\beta;X)=\sum_i\left[ (\alpha-1)\ln(x)+(\beta-1)\ln(1-x)-\ln \mathcal{B}(\alpha,\beta) \right]

Score function vector:

V(μ,σ;X)=(LαLβ)=i(ψ(0)(α+β)ψ(0)(α)+ln(x)ψ(0)(α+β)ψ(0)(β)+ln(x))V(\mu,\sigma;X) =\left( \begin{array}{c} \frac{\partial L}{\partial \alpha} \\ \frac{\partial L}{\partial \beta} \end{array} \right) =\sum_i \left( \begin{array}{c} \psi^{(0)}(\alpha+\beta)-\psi^{(0)}(\alpha)+\ln(x) \\ \psi^{(0)}(\alpha+\beta)-\psi^{(0)}(\beta)+\ln(x) \end{array} \right) with ψ(0)\psi^{(0)} being log-gamma function.

Observed information matrix:

𝒥(μ,σ;X)=(ψ(1)(α)ψ(1)(α+β)ψ(1)(α+β)ψ(1)(α+β)ψ(1)(β)ψ(1)(α+β))\mathcal J (\mu,\sigma;X)= \left( \begin{array}{cc} \psi^{(1)}(\alpha)-\psi^{(1)}(\alpha+\beta) & -\psi^{(1)}(\alpha+\beta) \\ -\psi^{(1)}(\alpha+\beta) & \psi^{(1)}(\beta)-\psi^{(1)}(\alpha+\beta) \end{array} \right) with ψ(1)\psi^{(1)} being digamma function.