Gamma.Rd
Density, distribution, quantile, random number
generation, and parameter estimation functions for the gamma distribution with parameters shape
and
scale
. Parameter estimation can be based on a weighted or unweighted i.i.d sample and can be carried out
numerically.
dGamma(x, shape = 2, scale = 2, params = list(shape = 2, scale = 2), ...)
pGamma(q, shape = 2, scale = 2, params = list(shape = 2, scale = 2), ...)
qGamma(p, shape = 2, scale = 2, params = list(shape = 2, scale = 2), ...)
rGamma(n, shape = 2, scale = 2, params = list(shape = 2, scale = 2), ...)
eGamma(X, w, method = c("moments", "numerical.MLE"), ...)
lGamma(
X,
w,
shape = 2,
scale = 2,
params = list(shape = 2, scale = 2),
logL = TRUE,
...
)
A vector of quantiles.
Shape parameter.
Scale parameter.
A list that includes all named parameters
Additional parameters.
A vector of probabilities.
Number of observations.
Sample observations.
An optional vector of sample weights.
Parameter estimation method.
logical; if TRUE, lBeta_ab gives the log-likelihood, otherwise the likelihood is given.
dGamma gives the density, pGamma the distribution function, qGamma the quantile function, rGamma generates random deviates, and eGamma estimates the distribution parameters.lgamma provides the log-likelihood function.
The dGamma()
, pGamma()
, qGamma()
,and rGamma()
functions serve as wrappers of the standard
dgamma
, pgamma
, qgamma
, and rgamma
functions
in the stats package. They allow for the parameters to be declared not only as
individual numerical values, but also as a list so parameter estimation can be carried out.
The gamma distribution with parameter shape
=\(\alpha\) and scale
=\(\beta\) has probability density function,
$$f(x)= (1/\beta^\alpha \Gamma(\alpha))x^{\alpha-1}e^{-x/\beta}$$
where \(\alpha > 0\) and \(\beta > 0\). Parameter estimation can be performed using the method of moments
as given by Johnson et.al (pp.356-357).
The log-likelihood function of the gamma distribution is given by,
$$l(\alpha, \beta |x) = (\alpha -1) \sum_i ln(x_i) - \sum_i(x_i/\beta) -n\alpha ln(\beta) + n ln \Gamma(\alpha)$$
where \(\Gamma\) is the gamma function. The score function is provided by Rice (2007), p.270.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions,
volume 1, chapter 17, Wiley, New York.
Bury, K. (1999) Statistical Distributions in Engineering, Chapter 13, pp.225-226,
Cambridge University Press.
Rice, J.A. (2007) Mathematical Statistics and Data Analysis, 3rd Ed, Brookes/Cole.
ExtDist for other standard distributions.
# Parameter estimation for a distribution with known shape parameters
X <- rGamma(n=500, shape=1.5, scale=0.5)
est.par <- eGamma(X, method="numerical.MLE"); est.par
#>
#> Parameters for the Gamma distribution.
#> (found using the numerical.MLE method.)
#>
#> Parameter Type Estimate S.E.
#> shape shape 1.5092211 0.08693682
#> scale scale 0.5011912 0.03415262
#>
#>
plot(est.par)
# Fitted density curve and histogram
den.x <- seq(min(X),max(X),length=100)
den.y <- dGamma(den.x,shape=est.par$shape,scale=est.par$scale)
hist(X, breaks=10, probability=TRUE, ylim = c(0,1.1*max(den.y)))
lines(den.x, den.y, col="blue")
lines(density(X), lty=2)
# Extracting shape or scale parameters
est.par[attributes(est.par)$par.type=="shape"]
#> $shape
#> [1] 1.509221
#>
est.par[attributes(est.par)$par.type=="scale"]
#> $scale
#> [1] 0.5011912
#>
# Parameter estimation for a distribution with unknown shape parameters
# Example from: Bury(1999) pp.225-226, parameter estimates as given by Bury are
# shape = 6.40 and scale=2.54.
data <- c(16, 11.6, 19.9, 18.6, 18, 13.1, 29.1, 10.3, 12.2, 15.6, 12.7, 13.1,
19.2, 19.5, 23, 6.7, 7.1, 14.3, 20.6, 25.6, 8.2, 34.4, 16.1, 10.2, 12.3)
est.par <- eGamma(data, method="numerical.MLE"); est.par
#>
#> Parameters for the Gamma distribution.
#> (found using the numerical.MLE method.)
#>
#> Parameter Type Estimate S.E.
#> shape shape 6.404003 1.7661637
#> scale scale 2.544659 0.7300405
#>
#>
plot(est.par)
# log-likelihood
lGamma(data,param = est.par)
#> [1] -80.68186
# Evaluating the precision of the parameter estimates by the Hessian matrix
H <- attributes(est.par)$nll.hessian
var <- solve(H)
se <- sqrt(diag(var));se
#> shape scale
#> 1.7661637 0.7300405